187 research outputs found

    Decision-making, attitudes, and understanding among patients and relatives invited to undergo genome sequencing in the 100,000 Genomes Project: A multisite survey study

    Get PDF
    PURPOSE: The purpose of this study was to assess decisions, attitudes, and understanding of participants (patients, parents, relatives) having genome sequencing for rare disease diagnosis. METHODS: This study involved a cross-sectional observational survey with participants in the 100,000 Genomes Project. RESULTS: Survey response rate was 51% (504/978). Most participants self-reported that they had decided to undergo genome sequencing (94%) and that this was an informed decision (84%) with low decisional conflict (95%). Most self-reported that they had chosen to receive additional findings (88%) and that this was an informed decision (89%) with low decisional conflict (95%). Participants were motivated more by the desire to help others via research than by the belief it would help them obtain a diagnosis (Z = 14.23, P = 5.75 × 10-46), although both motivations were high. Concerns were relatively few but, where expressed, were more about the potential psychological impact of results than data sharing/access (Z = 9.61, P = 7.65 × 10-22). Concerns were higher among male, Asian or Asian British, and more religious participants. General and context-specific understanding of genome sequencing were both moderately high (means 5.2/9.0 and 22.5/28.0, respectively). CONCLUSION: These findings are useful to inform consent guidelines and clinical implementation of genome sequencing

    Defective Presynaptic Choline Transport Underlies Hereditary Motor Neuropathy

    Get PDF
    The neuromuscular junction (NMJ) is a specialized synapse with a complex molecular architecture that provides for reliable transmission between the nerve terminal and muscle fiber. Using linkage analysis and whole-exome sequencing of DNA samples from subjects with distal hereditary motor neuropathy type VII, we identified a mutation in SLC5A7, which encodes the presynaptic choline transporter (CHT), a critical determinant of synaptic acetylcholine synthesis and release at the NMJ. This dominantly segregating SLC5A7 mutation truncates the encoded product just beyond the final transmembrane domain, eliminating cytosolic-C-terminus sequences known to regulate surface transporter trafficking. Choline-transport assays in both transfected cells and monocytes from affected individuals revealed significant reductions in hemicholinium-3-sensitive choline uptake, a finding consistent with a dominant-negative mode of action. The discovery of CHT dysfunction underlying motor neuropathy identifies a biological basis for this group of conditions and widens the spectrum of disorders that derive from impaired NMJ transmission. Our findings compel consideration of mutations in SLC5A7 or its functional partners in relation to unexplained motor neuronopathies

    Cleft Lip with Cleft Palate, Ankyloglossia, and Hypodontia are Associated with TBX22 Mutations

    Get PDF
    X-linked cleft palate and ankyloglossia (CPX) are caused by mutations in the TBX22 transcription factor. To investigate whether patients with ankyloglossia alone or in the presence of other craniofacial features including hypodontia or CLP might be caused by TBX22 mutations, we analyzed 45 Thai patients with isolated ankyloglossia, 2 unusual CPA families, and 282 non-syndromic Thai and UK patients with CLP. Five putative missense mutations were identified, including 3 located in the T-box binding domain (R120Q, R126W, and R151L) that affects DNA binding and/or transcriptional repression. The 2 novel C-terminal mutations, P389Q and S400Y, did not affect TBX22 activity. Mutations R120Q and P389Q were identified in patients with ankyloglossia only, while R126W and R151L were present in families that included CLP. Several individuals in these families were also found to have micro/hypodontia. This study has expanded the phenotypic spectrum of TBX22-related mutations to include dental anomalies and cleft lip

    Cardiospondylocarpofacial syndrome as a distinct hereditary connective tissue disorder: novel missense variant in MAP3K7 in two unrelated patients

    Get PDF
    CDKL5 deficiency disorder is a rare X-linked condition that results in early onset of impairedmotor and cognitive skills such as motor rigidity, stereotypical hand movements and deficient language acquisition aswell as recurrent seizures. It is caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene, which encodes a serine/threonine kinase involved in important neuronal processes such as cell signaling and neuron morphogenesis.FCT: UID/Multi/04326/2019 (CCMAR)info:eu-repo/semantics/publishedVersio

    Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1

    Get PDF
    Background: Syntaxin-binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype–phenotype correlations. Methods: We report 11 patients with pathogenic de novo mutations in STXBP1 identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). Results: Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype–phenotype correlation, but unlike previously reported cases, most of the DDD patients with STXBP1 pathogenic variants did not present with very early-onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. Conclusion: Variants across STXBP1 that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study.The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051)

    Protein structure and phenotypic analysis of pathogenic and population missense variants inSTXBP1.

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.BACKGROUND: Syntaxin-binding protein 1, encoded bySTXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype-phenotype correlations. METHODS: We report 11 patients with pathogenic de novo mutations inSTXBP1identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). RESULTS: Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype-phenotype correlation, but unlike previously reported cases, most of the DDD patients withSTXBP1pathogenic variants did not present with very early-onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. CONCLUSION: Variants acrossSTXBP1that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study.This study was supported by the Health Innovation Challenge Fund (grant number: HICF-1009-003) and Wellcome Trust Sanger Institute (grant number: WT098051)

    Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

    Get PDF
    Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway–modulating therapeutics

    Novel homozygous missense mutation in GAN associated with Charcot-Marie-Tooth disease type 2 in a large consanguineous family from Israel.

    Get PDF
    BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone

    Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome.

    Get PDF
    CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome
    • …
    corecore